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I. INTRODUCTION 

Many attempts were made to derive with the old quantum 
theory structures for the hydrogen molecule, Hz, and the hydrogen 
molecule-ion, Hz f, in agreement with the experimentally observed 
properties of these substances, in particular their energy contents. 
These were all unsuccessful, as were similar attempts to derive a 
satisfactory structure for the helium atom. It became increas- 
ingly evident that in these cases the straightforward application 
of the old quantum theory led to results definitely incompatible 
with the observed properties of the substances, and that the 
introduction of variations in the quantum rules was not sufficient 
to remove the disagreement. (For a summary of these applica- 
tions see, for example, Van Vleck (l).) This fact was one of those 
which led to the rejection of the old quantum theory and the 
origination of the new quantum mechanics. The fundamental 
principles of the quantum mechanics were proposed by Heisen- 
berg (2) in 1925. The introduction of the matrix algebra (3) led 
to rapid developments. Many applications of the theory were 
made, and in every case there was found agreement with experi- 
ment. Then the wave equation was discovered by Schrodinger 
(4), who developed,and applied his wave mechanics independently 
of the previous work. Schrodinger’s methods are often con- 
siderably simpler than matrix methods of calculation, and since 
it has been shown (5) that the wave mechanics and the matrix 
mechanics are mathematically identical, the wave equation is 

173 



174 LIKUS PAULING 

generally used as the starting point in the consideration of the 
properties of atomic systems, in particular of stationary states. 

The physical interpretation of the quantum mechanics and its 
generalization to include aperiodic phenomena have been the sub- 
ject of papers by Dirac, Jordan, Reisenberg, and other authors. 
For our purpose, the calculation of the properties of molecules in 
stationary states and particularly in the normal state, the con- 
sideration of the Schrodinger wave equation alone suffices, and it 
will not be necessary to discuss the extended theory. 

In  the following pages, after the introductory consideration of 
the experimentally determined properties of the hydrogen mole- 
cule and molecule-ion, a unified treatment of the application of 
the quantum mechanics to the structure of these systems is 
presented. In  the course of this treatment a critical discussion 
will be given the numerous and scattered pertinent publications. 
It will be seen that in every case the quantum mechanics in 
contradistinction to the old quantum theory leads to results in 
agreement with experiment within the limit of error of the calcu- 
lation. It is of particular significance that the straightforward 
application of the quantum mechanics results in the unambiguous 
conclusion that two hydrogen atoms will form a molecule but 
that two helium atoms will not; for this distinction is character- 
istically chemical, and its clarification marks the genesis of the 
science of sub-atomic theoretical chemistry. 

11. THE OBSERVED PROPERTIES OF THE HYDROGEN MOLECULE AND 
MOLECULE-ION 

The properties of the hydrogen molecule and molecule-ion 
which are the most accurately determined and which have also 

. been the subject of theoretical investigation are ionization 
potentials, heats of dissociation, frequencies of nuclear oscillation, 
and moments of inertia. The experimental yalues of all of these 
quantities are usually obtained from spectroscopic data; substan- 
tiation is in some cases provided by other experiments, such as 
thermochemical measurements, specific heats, etc. A review of 
the experimental values and comparison with some theoretical 
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results published by Birge (7) has been used as the basis for the 
following discussion. 

The ultraviolet absorption spectrum of hydrogen was analyzed 
by Dieke and Hopfield (8). They identified the three lowest 
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FIQ. 1. ENERGY LEVEL DIAGRAM FOR THE THREE LOWEST ELECTRONIC STATES OF 
THE HYDROGEN MOLECULE, SHOWISG SCCCESSIVE OSCILLATIONAL LEVELS 

electronic states, indicated in figure 1 by the symbols A ,  B, and C, 
and for each a number of states of oscillation of the nuclei, also 
shown in the figure. In  addition there is a fine-structure of each 
oscillational state due to rotation of the molecule. A number of 
these levels were independently obtained by Witmer (9) from the 
analysis of the Lyman bands. Richardson (10) has analyzed 
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bands in the visible, and on the basis of comparison of the oscilla- 
tional and rotational fine-structure has identified the lower states 
of some of these bands with Dieke and Hopfield’s B and C states. 
The upper levels of Richardson’s bands correspond to an electron 
in successive excited states, and by means of an assumed Rydberg 
formula Birge has carried out the extrapolation to ionization, and 
has obtained for the ionization potential of the hydrogen molecule 
the value 

IHz = 15.34 f 0.01 volts 
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F I Q .  2. THE OSCILLATIONAL FREQUENCY FOR THE NORMAL STATE OF THE 
HYDROGEN MOLECULE AS A FUNCTION OF THE OSCILLATIONAL 

QUANTUM NUMBER 
The area under the curve gives the heat of dissociation 

He also states that he has verified this value by means of the 
heat of dissociation of various excited states of the molecule as 
obtained by extrapolating the oscillational levels in the way 
described below, 

Ionization by electron impact has been shown (11) to occur at  
about 16.1 volts. Condon has given the explanation of the 
discrepancy between this and t’he band spectrum value in terms of 
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a general phenomenon discovered and interpreted by Franck (12). 
We shall see later that the equilibrium internuclear distance for 
H2 is about 0.75 A, and for H2+, 1.06 A. When H2 in the normal 
state is ionized by electron impact to H2+ the nuclei do not have 
time to move, but are left some distance from their new equi- 
librium positions. As a result large nuclear oscillations occur, 
estimated by Condon to correspond to about 1 volt-electron of 
oscillational energy; and this energy in addition to the ionization 
energy must be supplied by the impacting electron. 

The best experimental value of the heat of dissociation of HZ 
is that obtained by Witmer (9) by extrapolating the oscillational 
levels of the normal state of the molecule to dissociation, The 
restoring force acting on the two nuclei becomes smaller as the 
nuclei get farther apart, and as a result the oscillational frequency 
in successive oscillational states becomes smaller and smaller. 
For Hz in the normal state this oscillational frequency 

1 a E, 
" - h  a n  

is represented in figure 2 for values of n, the oscillational quantum 
number,' from 0 to 11. The curve was extrapolated by Witmer 
as shown by the dotted line; the area under it is equal to the 
heat of dissociation, and gives 

D H ~  = 4.34 f 0.1  volt-electrons 

It is of interest to note that dissociation, represented in figure 1 
by the dotted line, is very close to the highest observed os- 
cillational-rotational state. Indeed the oscillational and rota- 
tional energy of the highest observed level was 4.10 v.e. (94,600 
cal/mole), which must be a lower limit to the heat of dissociation. 

The value 4.34 v.e. is equal to 100,000 cal/mole. Thermo- 
chemical measurements are in satisfactory agreement with this 
spectroscopic result. Thus Isnardi's experiments (13) on the 
thermal conductivity of partially dissociated hydrogen give, with 
the computational error discovered by Wohl (14) corrected, a 

The true oscillational quantum number has the values 1/2, 3/2, 5/2,. . . For 
convenience we shall use in this paper the integers obtained by subtracting 4 
from these values, unless specific mention is made of an alternative procedure. 

w - - -  
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value between 96,765 and 102,257 cal/mole. Langmuir's most 
recent value from his similar measurements (15) is 97,000 
cal/mole . 

From the rotational fine-structure of the A levels Hori (16) 
obtained the value 

I, = 0.467 X g. cm.* 

for the moment of inertia of the molecule in the normal state, 
corresponding to an equilibrium internuclear distance 

T~ = 0.76 A 
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TABLE 1 
operties of the hydrogen molecule 

E,.cm-i 

0 
90083 
(94735) 
94906.7 
(95469) 
99086 

11 1427 
111518.1 
111656.8 
117169.9 
117216.9 
119744.2 
121130.2 
121961 .O 
122498.3 
124237 

n* 

0.9396 
1.7920 

(1 .9281) 
1.9337 
(1 ,9526) 
2.0882 
2.9261 
2.9365 
2.9526 
3.9395 
3.9526 
4.941 
5.942 
6.942 
7.942 

w,,cm-l 

42 64 
1325 
2390 
2593.82 

2380 

2306.94 
2373.89 
2276.45 
2325.6(?) 
2251 
2229 (?) 

2247 

T o A  

0.76 
1.55 
0.97 
1 .os 

1.06 

1.136 

1.145 

1.168 
1.166 

(1.06) 

This result is independently verified by Dennison (17) who has 
recently given a satisfactory theory of the specific heat of hydro- 
gen. The observed specific heat as interpreted by Dennison 
requires that I, be equal to 0.464 x 10-40 g. crna2. The very recent 
measurements by Cornish and Eastman (18) of the specific heat 
of hydrogen from the velocity of sound are said to agree very well 
with Dennison's theory if I, be given the value of 0.475 X 
g. cm.2. 

The oscillational frequency of the nuclei in Hz in the normal 
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state was calculated by Birge from the measurements of Witmer, 
Dieke and Hopfield, and Hori to be 

0~~ = 4264 cm. -* 

By extrapolating the observed oscillational frequencies for various 
excited states of Hz forming a part of a Rydberg series, Birge 
obtained for H2+ in the normal state the value 

= 2247 cm.-l 

A summary of information regarding various electronic states 
of the hydrogen molecule is given in table 1, quoted from Birge. 

The symbols in the second column represent the electronic 
state; in particular the first number is the total quantum number 
of the excited electron. We shall see later that in one case at  
least the symbol is probably incorrect. The third column gives 
the wave-number of the lowest oscillational-rotational level, 
the fourth the effective quantum number, the fifth and sixth the 
oscillational wave-number and the average internuclear distance 
for the lowest oscillational-rotational level. The data for Hz+ 
were obtained by extrapolation, except r,,, which is Burrau's 
theoretical value (Section VIa). 

The interrelation of these quantities and comparison with 
theoretical results will be discussed in the following sections of this 
paper. 

111. THE HYDROGEN ATOM 

The wave equation representing a conservative Xewtonian 
dynamical system is 

(1) 
87r2 

A+ + (W - V(qd)  G = 0 

with the conditions that rl., the wave function or eigenfunction, 
be everywhere continuous, single-valued, and bounded. W and 
V (qk) are the energy constant and the potential energy; and the 
differential operations are with respect to coordinates whose 
line-element is given by 

ds' = 2T (qk, &) dt*, 
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in which T is the kinetic energy expressed as a function of the 
velocities. Only certain functions satisfy these requirements in 
any given case; to each there corresponds a characteristic value of 
the energy constant W. For a hydrogen-like atom with fixed 

nucleus of charge Ze the potential energy is - - , and the wave 

equation is 

Ze2 
r 

On writing for the eigenfunction 

\Ln~rn Xnr (T) Y z ~  ($1 Z m  (PI, (3) 

the wave equation can be resolved into three total differential 

L(::f) ( 5 )  represents the (21 + 1 ) t h  derivative of the (n + Z ) t h  
Laguerre polynomial (20); and Py (cos 6) is Ferrers’ associated 
Legendre function of t.he first kind, of degree 1 and order m. 
Yl, Z, thus constitutes a tesseral harmonic (21). The $’s are 
in this form orthogonal and normalized, so that they fulfill the 
conditions 

1 for n = n’, 1 = l ’ ,  m = m’ 
0 otherwise S +nlm \Lnlz,m, dn = 

in which dn is the element of volume. The parameter n, the 
principal quantum number, can assume the values 1,2 ,3 ,  . . . ; 
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I, the analogue of the azimuthal quantum number, the values 
0, 1, 2, . . . n-1; and m, the magnetic quantum number, the 
values 0, A 1, =t 2, . . . =tt. 

I 1 I I 1 I 1 
0 1 .u 2.0 3.0 f 

t j .  

FZQ. 3 
The eigenfunction $100, the electron density p = $ Z l 0 ~ ,  and the electron 

distribution function D = 4 R r* P of the normal hydrogen atom as functions of 
the distance r from the nucleus. 

The normal state of the atom is that  with n = l,Z = 0, m = 0. 
The corresponding eigenfunction is 

CHEMICAL REYIEWB, VOL. V, SO. 2 
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The quantity $2 as a function of the coordinates is interpreted as 
the probability of the corresponding microscopic state of the 
system; in this case the probability that the electron occupies a 
certain position relative to the nucleus. It is seen from equation 
6 that in the normal state the hydrogen atom is spherically 
symmetrical, for #,,, is a function of T alone. The atom is further- 
more not bounded, but extends to  infinity; the major portion is, 
however, within a radius of about Za, or 1A. In figure 3 are 
represented the eigenfunction #,,, the average electron density 
p = #:oo and the radial electron distribution D = 4a r2p for the 
normal state of the hydrogen atom. 

The energy values correponding to the various stationary 
states are found from the wave equation to be those deduced 
originally by Bohr with the old quantum theory; namely, 

The energy of the normal state of hydrogen is 

(8) 
e 2  

2 a, 
- 13.54 v.e.  It', = - - = 

IH, the ionization potential of hydrogen, accordingly is equal to 
13.54 volts. 

This simplified treatment does not account for the fine-structure 
of the hydrogen spectrum. It has been shown by Dirac (22) 
that the assumption that the system conform to the principles of 
the quantum mechanics and of the theory of relativity leads to 
results which are to a first approximation equivalent to attribut- 
ing to  each electron a spin; that is, a mechanical moment and a 
magnetic moment, and to assuming that the spin vector can 
take either one of two possible orientations in space. The 
existence of this spin of the electron had been previously deduced 
by Uhlenbeck and Goudsmit (23) from the empirical study of 
line spectra. This result is of particular importance for the 
problems of chemistry. 
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IV. THE PERTURBATION THEORY O F  THE QUANTUM MECHANICS. 
THE RESONANCE PHENOMENON 

The first-order perturbation theory of the quantum mechanics 
(4,111) is very simple when applied to a non-degenerate state of 
a system; that is, a state for which only one eigenfunction exists. 
The energy change W1 resulting from a perturbation function f 
is just the quantum mechanics average off for the state in ques- 
tion; i,e., it is 

W1 = J f $2 dn (9) 

As an example we may calculate the energy of the helium atom in 
its normal state (24). Neglecting the interaction of the two 
electrons, each electron is in a hydrogen-like orbit, represented by 
equation 6; the eigenfunction of the whole atom is then I/,,, (1) 
$,,, (2), where (1) and (2) signify the first and the second electron. 

The perturbation function is the electronic interaction 

the perturbation energy is 

in which subscripts refer to the two electrons. This integral has 
5 ZeS the value - -. The energy of the unperturbed system was 
8 a, 

(equation 7 )  - 2- = -108.4 v.e., giving a total energy of Z2e2 
2a0 

- -- l1 ea or -74.5 v.e. The experimentally determined value is 
4 a0 

-78.8 v.e. Thus the first-order approximation reduces the 
discrepancy from 29.6 v.e. to -4.3 v.e. -4 more accurate theo- 
retical calculation (25) has led to -77.9 v.e. 

If the unperturbed system is degenerate, so that several linearly 
independent eigenfunctions correspond to the same energy value, 
then a more complicated procedure must be followed. There 
can always be found a set of eigenfunctions (the zeroth order 
eigenfunctions) such that for each the perturbation energy is 
given by equation 9; and the perturbation theoryprovides the 
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method for finding these eigenfunctions (4, 111). This result 
is of importance for systems containing twa or more electrons. 
Let us consider, for example, an excited helium atom. Neglect- 
ing the interaction of the two nuclei the system may be described 
by saying that the electrons are in two different orbits, repre- 
sented by the hydrogen-like eigenfunctions $ and cp, say. The 
eigenfunction for the atom is, then, $ (1) cp (2). But on inter- 
changing the electrons to give $ (2) cp (1) the energy of the system 
is unchanged, so that the system is degenerate. The perturba- 
tion theory leads to the result that the correct eigenfunctions are 
not $ (1) cp (2) and cp (1) $ (2), but rather 

(Ilb) 

*,g is said to be symmetric in the coordinates of the two electrons, 
for interchanging them leaves the eigenfunction unchanged, 
while qA is antisymmetric, for interchanging the electrons 
changes the sign of the eigenfunction. 

Substitution of these eigenfunctions in equation 9 leads to the 
result 

1 ”* = - I$ (1) 9 (2) - ‘P (1) $ (2 ) )  4 

(12) W’,S = Hi1 + Hiz 
W’A = Hi1 - Hi2 

with 
Hi1 = SS/ $’(I) ‘~‘(2) dni dnz 

Hiz = SSf $ (1) 9 (1) $ (2) ‘P (2) dQi dQz. 

If the electrons did not change positions; that is, if $ (1) cp (2) or 
cp (1) $ (2) were the correct eigenfunction, the perturbation energy 
would be HI1 alone. The added or subtracted term Hlz  results 
from one electron jumping from one orbit (+) to the other (cp)  

at the same time that the other electron makes the reverse jump. 
For this reason =t Hlz is called the interchange or resonance 
energy. This phenomenon, called the interchange or resonance 
phenomenon, was discovered by Heisenberg and Dirac (26). 



STRUCTURES FOR Hz AND Hz+ 185 

There is no classical analogue of it save the trivial case of the 
resonance of two similar harmonic oscillators. 

The interchange energy of electrons i s  in general the energy of the 
non-polar or shared-electron chemical bond. 

V. THE PROPERTIES O F  MOLECULES ACCORDING TO THE QUANTUM 
MECHANICS 

The procedure to be followed in the theoretical discussion of the 
structure of molecules has been given by Born and Oppenheimer 
(27), who applied the perturbation theory (to the fourth order) 
to a system of nuclei and electrons. They showed that the 
electronic energy is first to be calculated for various arrangements 
of the nuclei fixed in space. The stable state will then be that for 
which the so-calculated electronic energy added to the inter- 
nuclear energy is a minimum. The nuclei will then undergo 
oscillations about their equilibrium positions, with the electronic 
and nuclear energy as the restoring potential; and the molecule 
as a whole will undergo rotations about axes passing through its 
center of mass. 

The justification was also given for the assumption made 
originally by Franck (12) that during an electron transition the 
nuclei retain the configuration characteristic of the initial state. 

These results were true for classical mechanics and the old 
quantum theory, and had been assumed without proof by many 
people before the work of Born and Oppenheimer was published. 

VI. THE HYDROGEN MOLECULE-ION 

a. Numerical solution of the wave equation 

The system to be considered consists of two nuclei and one 
electron. For generality let the nuclear charges be Z,e and 
2,e. From Born and Oppenheimer’s results it is seen that the 
first step in the determination of the stationary states of the 
system is the evaluation of the electronic energy with the nuclei 
fixed an arbitrary distance apart. The wave equation is 
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in which TA and rB represent the distance of the electron from 
nucleus A and nucleus B respectively. If elliptic coordinates 
E, 7, and cp, defined by the equations 

' A  + 'B € = -  
'AB 

' A  - 'B v = -  
, 'AB 

X 

4G-7 (p = cos-1 

in which TAB in the internuclear distance, be introduced, the 
partial differential equation becomes separable into three total 
differential equations. For introducing 

with 15 [ 5 
and 

with - 1 5 7 5 + 1  

in which 
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and m, X, and p are undetermined parameters. The solutions of 
Equation 16a are known; in order that @ be an eigenfunction 
m must assume only the values 0, =tl, =t2, . . . Similarly in 
order for E and H to be eigenfunctions X and p must assume 
specific values, with the accompanying determination of the 
energy constant W as a function of the nuclear separation T A B .  

Many efforts have been made to solve these equations analy- 
tically, but so far they have all been unsuccessful, and little has 
been published regarding them. Some unsatisfactory work has 
been reported by Alexandrow (28). Very recently a short report 
of a paper read by Wilson before the Royal Society has appeared 
(29). It is probable, in view of the vigor with which it is being 
attacked, that the problem will be solved completely before very 
long. 

The problem has already been solved for the normal state of the 
hydrogen molecule-ion (2, = 2, = 1) by the use of numerical 
methods. A rather complete account of these calculations of 
Burrau (30) will be given here, since the journal in which they 
were published is often not available. 

The numerical solution of the equations was carried out in the 
following way. For the lowest state m is equal to 0, and for 
hydrogen, with 2, = ZB = 1, b = 0. Introducing new variables 

1 dZ 1 dH 
df H dq 

"E - -- and u,, = - - -7 Equations 16b and 16c 

become 

f 2  - 2 (P - u t )  f - !4 5- - UE2 - (16b') 
d f  € 2  - 1 

and 

x 7 1 2 + 2 u v , , - p  
( 1 6 ~ ' )  - -  do? - @ 2  - 

d s  ? 1 - 72. 

For a given value of A, u,, is expanded as a power series satisfying 
Equation 16c' about the points v = 0 and v = 1 (or -1). It is 
found that these series coincide at  v = 1/2 only when p has a 
certain value. In this way a relation between A and 1.1 is found. 
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For each value of p a similar treatment is given Equation 16b', 
resulting in the determination of the corresponding value of 
p,  and hence of the relation between W and p .  The results of the 
calculation are given in table 2, taken directly from Burrau. The 
electronic energy is given in the third column. To it must be 

added the internuclear energy - = - - (fourth column) to 

obtain the total energy given in the fifth column. 
The relation between W and p is shown in figure 4; that for 

Wtot.l in figure 5.  It is seen that the equilibrium distance of 
the nuclei is p = 2.0 =t 0.1, or T, = 1.06 & 0.05 A. The corre- 
sponding total energy is Wtotal = 1.204 0.002 WH or - 16.30 

ea 'WH 
T A B  P 

TABLE 2 

Energy of the hydrogen molecule-ion 

P 

- 
0.0 
1 .0  
1 .3  
1 .6  
1 .8  
2 .o 
2 .2  
2 .4  
2.95 

OD 

x 

0.000 
0.724 
1.119 
1.559 
1.870 
2.204 
2,552 
2.917 
3.995 

w - 4 "  K Pa 

4.000 
2.896 
2.648 
2.436 
2.309 
2.204 
2.109 
2.025 
1.836 
1.000 

? 
P 

m 

2.000 
1.538 
1.250 
1.111 
1 .ooo 
0.909 
0.833 
0.678 
0.000 

*tots1 
WE 
- 

00 

0.896 
1.110 
1.186 
1.198 
1.204 
1.200 
1.192 
1.158 
1.000 

=t 0.03 v.e. To this there is to be added the oscillational energy 
+Lo of the lowest oscillational state. The frequency W ,  is 
obtained from the curvature of the Wtotal curve, and leads to $hw, 
= 0.14 v.e. according to Condon, who corrected an error made by 
Burrau (Condon's value is reported by Birge ( 7 ) ) .  The energy 
of H2+ in the normal state is thus 

WE*+ = - 16.16 i 0.03 v.e. 

It is now possible to check the relation 

IH* + Inz+ = + 2 IH, 
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in which D'H, is the dissociation potential of hydrogen. With 
IH, = + 15.34 v. (Section 2), and IH = + 13.54 v. This 
equation leads to 

DH2 = 4.42 v.e. = 102000 cal/mol. 

for the energy of dissociation of the hydrogen molecule. This 
is within the limit of error equal to the band spectrum value 4.34 

W 
wk' 

0 1 2 3 4 5 
P-) 

FIQ. 4. THE ELECTRONIC ENERQY OF THE HYDROQEN MOLECULE-ION IN THE 
NORMAL STATE AS A FUNCTION OF THE DISTANCE BETWEEN THE Two 

NUCLEI (BURRAU) 

f 0.10 v.e., and is to be accepted as the most accurate deter- 
mination of the heat of dissociation of hydrogen. 

The heat of dissociation of HP+ into H and H+ is 

D H ~ +  = WE - W,,+ = 2.62 v.e. 

No direct determination of this quantity has been made. 
The value 2247 cm-1 for w0 for Hz+ obtained by Birge (table 1) 

leads to +Lo = 0.141 v.e., in very good agreement with the 
theoretical 0.14 v.e. 
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The average electron density $2 as a function of position was 
also found by Burrau. For the normal state $2 is represented in 
figure 6, in which the contour lines pass through points of relative 
density 1.0, 0.9, 0.8, . . . 0.1. The second curve represents 
the values of $2 along the line passing through the two nuclei. 
(42 is cylindrically symmetrical about this line). It will be seen 
that the electron is most of the time in the region between the 
two nuclei, and can be considered as belonging to them both, and 
forming a bond between them. 

0 1 2 3 5 

P’ 

FIG. 5. THE TOTAL ENERGY OF THE HYDROGEN MOLECULE-ION AS A FCNCTION OF 
p (BURRAU) 

b. Application of the first-order perturbation theory 
Although no new numerical information regarding the hydrogen 

molecule-ion can be obtained by treating the wave equation by 
perturbation methods, nevertheless it is of value to do this. For 
perturbation methods can be applied to many systems for which 
the wave equation can not be accurately solved, and it is desirable 
to have some idea of the accuracy of the treatment. This can be 
gained from a comparison of the results of the perturbation 
method of the hydrogen molecule-ion and of Burrau’s accurate 
numerical solution. The perturbation treatment assists, more- 
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over, in the physical interpretation of the forces operative in the 
formation of the ion; for the electronic energy is obtained as the 
sum of terms each of which can be related without difficulty to  a 
visualisable process of interaction of the nuclei and the electron. 

A hydrogen atom and a proton serve as the starting point of the 
calculation. With the nuclei a distance TAB apart, and with the 
electron attached to the nucleus A to form a hydrogen atom, the 
zeroth order eigenfunction is 

and the action of nucleus B on the electron is the perturbation. 

FIQ. 6. THE ELECTRON DENSITY $' FOR THE HYDROGEN MOLECULE-ION IN THE 
NORMAL STATE (BURRAU) 

The contour lines represent in section places of relative density 1.0, 0.9, 0.8, 
. .0.1. The density at points along a line drawn through the nuclei is given above. 

But the configuration with the electron on nucleus B and with the 
eigenfunction 

corresponds to the same energy. The unperturbed system is thus 
degenerate. There is, however, no perturbation function for the 
system as a whole, for in each case the interaction between the 
electron and the more distant nucleus produces the perturbation; 
and accordingly the usual theory for degenerate systems cannot 
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be directly applied. It is instead found that on carrying out the 
treatment used in the derivation of the ordinary perturbation 
theory closely similar results are obtained. The correct zeroth 
order eigenfunctions are linear aggregates of and (p, and are, 
indeed, symmetric and antisymmetric in the two nuclei; they are 

1 
(9 - (PI 4 3  @ =  

with 

' P  S -  I L ( ~ d n = e  ( 1 + ~ + 4 ~ ~ ) ~  s 
in which 

rABl assuming 2, = ZB = 2. z 
p = -  

a, 

(18b) 

(19s) 

The radicals in the denominators are necessary in order that the 
new eigenfunctions be normalized. The wave equation (Equa- 
tion 13) can now be written 

2, e* 

TA 
*IL + (W. + W' + - (20) 

in which W1 is the perturbation energy. It is found (see Heitler 
and London (39) for the detailed treatment of a similar problem) 
that the perturbation energy for the eigenfunction \E is given 
by the solution of the equation 

This leads to the result 
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in which 

and 

The total energy, including the internuclear term, is then 

193 

P+ 

FIQ. 7. 
Curve 1 represents the total energyof the hydrogen molecule-ion as calculated 

by the first-order perturbation theory; curve 2, the n a k e  potential function 
obtained on neglecting the resonance phenomenon; curve 3, the potential func- 
tion for the antisymmetric eigenfunction, leading to elastic collision. 

In figure 7 is shown the so-calculated total energy Wtotsl for 
H2+ as a function of p.  Comparison with figure 5 shows that the 
perturbation curve is too high; the force holding the ion together 
is too small. Equilibrium occurs a t  p = 2.5 or r, = 1.32 A 
(correct value, 1.06 A), and the energy of the ion is then -15.30 
v.e. (correct value, -16.30 v.e.). 
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The eigenfunction 9 is represented qualitatively by figure 6, 
but is somewhat more extended, for the contracting influence of 
the second nucleus has not been taken into account. 

It is of interest to calculate the energy corresponding to the 
single eigenfunction $ (or q); i.e., to find the interaction of a 
proton and a hydrogen atom that would result if the electron 

FIG. 8 
The contour lines represent points of relative density 1.0, 0.9, 0.8,..0.1 for a 

hydrogen atom. This figure, with the added proton 1.06 a from the atom, gives 
the electron distribution the hydrogen molecule-ion would have (in the zeroth 
approximation) if the resonance phenomenon did not occur; it is to  be compared 
with figure 6 to show the effect of resonance. 

were not allowed to jump from one nucleus to the other. For 
this case 

and 
e2 

WTotal = W, - e2 II + -. 
r~~ 

(The perturbation energy is here just the electrostatic energy 
calculated for the electron distribution given by $2; it is in part 
this feature of the perturbation theory which led Schrodinger to 
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proclaim that the electron is smeared through space, and which 
supports the present interpretation of $2 as the probability that 
the electron will be in the selected region.) This naive potential 
is also represented in figure 7. It leads to a repulsive force at  all 
distances. The correct perturbation calculation given in Equa- 
tion 23 differs from the naive one in that it involves consideration 
of the interchange or resonance phenomenon, and leads to an 
attraction, giving an energy of formation of Hz+ of about 1.62 v.e. 
(correct result from Burrau, 2.62 v.e.). We thus see that the 
fact that the electron can jump from one nucleus to the other-in 
other words, is shared between the two nuclei- is mainly respon- 
sible for the formation of the molecule-ion H2+ from H+ and H. 
The way the electron distribution is affected by the resonance 
phenomenon is seen by comparing figure 6 with figure 8, 
which shows contour lines (of electron density $2) for a 
hydrogen atom and a proton a t  the distance p = 2 (1.06 A), 
This comparison is particularly effective in showing that the 
sharing of the electron between the two nuclei results from the 
resonance phenomenon. 

This resonance energy leads to molecule formation only if the 
eigenfunction is symmetric in the two nuclei. The perturbation 
energy for the antisymmetric eigenfunction is 

and the total energy, 

II - Iz e2 
W ,  Total = W ,  - ez - f -  1 - s TAB' 

(26) 

also shown in figure 7, leads to strong repulsion at  all distances. 
This eigenfunction does not, then, give rise to a stable excited 
state of the hydrogen molecule-ion. Stable excited states will, 
however, correspond to the symmetric eigenfunctions relating to 
the various excited states of the hydrogen atom; and in each case 
(at least until deformation becomes very pronounced) not to the 
antisymmetric eigenfunctions. This is contrary to the qualita- 
tive scheme of levels given by Hund (31), who in a series of papers 
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(32) has considered the application of the quantum mechanics to 
molecules in general, with particular reference to molecular 
spectra. 

The above perturbation treatment of the hydrogen molecule- 
ion has not before been published. 

c. The second-order perturbation calculation 

An attempt was made by Unsold (33) to evaluate to the second- 
order the interaction of a proton and a hydrogen atom. He 
found, neglecting the resonance phenomenon, that the second- 
order perturbation energy is given approximately by the expres- 
sion 

4 1 2 1  - - P  + 2 + - + - + ;;; + ;) 
3 3P P2 

in which Ei (-2p) represents the integral logarithm with the 
argument -2p. This expression is accurate for large values of 

ea, 
p ;  for it then reduces to - 4 -, in which CY, the polarizability 

of a hydrogen atom, has the value 0.667 x 10-24 deduced from 
the second-order Stark effect energy (34). 

Using this expression and the value given in Equation 24 for 
the first-order perturbation, Unsold found that equilibrium 
would occur a t  p = 1, ro = 0.53 A; and that the electronic energy 
of the hydrogen molecule-ion would then be -1.205 WH, or 
-16.31 v.e., in exact agreement with Burrau's value. This 
agreement is, however, misleading, and indeed the calculation is of 
no significance, for Unsold neglected to consider the resonance 
phenomenon, making use instead of the nahe  first-order pertur- 
bation. We may, however, attempt to rectify this by adding the 
second-order energy W2 to  the correct first-order energy of Equa- 
tion 23. When this is done it is found that equilibrium occurs at 
p = 1.2, r, = 0.64 A, and that the energy then is -17.95 v.e3 

T4AB 
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Burrau.. ....................... 
First-order ..................... 
Second-order. . . . . . . . . . . . . . . . . . .  

The results of Burrau’s calculation, of the first-order perturbation 
treatment, and of the second-order treatment are given in table 3. 

It will be seen that the second-order treatment leads to results 
which deviate more from the correct values than do those given 
by the first-order treatment alone. This is due in part to the 
fact that the second-order energy was derived without considera- 
tion of the resonance phenomenon, and is probably in error for 
that reason. The third-order energy is also no doubt appreciable. 
It can be concluded from table 3 that the first-order perturbation 
calculation in problems of this type will usually lead to rather 
good results, and that in general the second-order term need not 
be evaluated. 

2.0 l.06b 
2.5 1.32 
1 .2  0.64 

TABLE 3 

The properties of the  hydrogen molecule-ion 

I p I Q  
~~ 

-16.30v.e. 
-15.30 
-17.95 

In dealing with problems of molecular structure it has been 
customary in the past to introduce the energy of polarization of 

e% one atom or ion by another ion in the form - 1 - and to give 
r4AB’ 

CY the value it possesses in a uniform field. The form of Equation 
27 shows that this is not a good representation of the polarization 
energy, for i t  gives values which are much too large at small 
distances. Indeed, if we attach this term to the first-order 
energy of Equation 23, it is found that the correct equilibrium 
distance ro = 1.06 A results only if CY be placed equal to 0.032 x 
10-24 ,  which is only 5 per cent of the true polarizability of hydro- 
gen. This indicates that in general better results will be obtained 
in the theoretical treatment of the structure of molecules by 
ignoring polarization completely than by introducing the usual 
expression for the polarization. As a matter of fact, it has already 
been pointed out by Fajans (35) that the experimental values of 
the heat of sublimation of the alkali halides agree better with 
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those calculated by Reis (36), who neglected polarization, than 
with those of Born and Heisenberg (37), who took it into con- 
sideration. As a result of this it is probable that the numerous 
discussions of molecular structure based on polarization (38) are 
of only limited significance. 

VII. THE HYDROGEN MOLECULE 

a. Perturbation treatment of the interaction of two hydrogen atoms 

The most satisfactory treatment which has been given the 
structure of the hydrogen molecule is that of Heitler and London 

A B 
FIQ. 9. DIAQRAMMATIC REPRESENTATIOX OF TIIE EIOENFUSCTIOXS FOR T W O  

HYDROQEN ATOMS 

F I Q .  10. DIAQRAM SHOWINQ THE SYMBOLS USED FOR THE VARIOUS INTERNUCLEAR 
AND INTERELECTRONIC DISTANCES 

(39). The system to be treated consists of two nuclei A and B 
and two electrons 1 and 2. In the unperturbed state two hydro- 
gen atoms are assumed, so that the zeroth-order energy is 2WH. 
If the first electron is attached to nucleus A and the second to 
nucleus B, the zeroth-order eigenfunction is $ (1) cp (2), in which 
$ and cp are the functions given in Equations 17a and 17b. The 
state obtained by interchanging the two electrons, cp (1) $(2), 
corresponds to the same zeroth-order energy, so that the system 
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is degenerate, and must be treated in a way similar to that applied 
to the hydrogen molecule-ion in Section VIb. 

The wave equation for t’he hydrogen molecule with fixed nuclei 
is 

in which A, and A2 represent the second differential operations 
with respect to the coordinates of the first and the second electron 
respectively, and the various r’s refer to the distances indicated 
in figure 10. The correct zeroth-order eigenfunctions are found 
by the procedure of Section VIb to be the symmetric 

and the antisymmetric 

in which S is given by Equation 19a. 
In  this case, too, molecule formation results from the symmetric 

eigenfunction. The corresponding perturbation energy W1 is 
obtained from an equation of the type of Equation 20 involving 
?PHz and the wave equation 28. It is 

in which 1, and 1, are given by Equations 19b and 19c, and 1 4  
and Is by 

and 

CHEMICAL REVIEWS. YOL. Y ,  NO. 2 
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+ - S2 (Y  + log p )  + 8'' Ei(- 4 p )  - 2 SS' Ei(- 2 P )  , (19e) 
P 6{ I1 

in which "/ = 0.5772 . . is Euler's constant, and S' = ep (I - p + Q P2). 
-0.6 

-0.4 

W ' 4 . 2  
WH 

0 

0 . 2  

0.4 
0 '1 2 3 4 5 6 

P+ 

FIQ. 11 
Curve 1 shows the total energy for the normal state of the hydrogen molecule 

as given by the first-order perturbation theory; curve 2, the naive potential 
function obtained by neglecting the resonance phenomenon; and curve 3, the 
potential function for the antisymmetric eigenfunction, corresponding to elastic 
collision. 

The energy W1 depends largely on the integral 16, for which 
Heitler and London gave only an approximation. The difficult 
problem of carrying out this integration was solved by Sugiura 
(40), whose result is given in Equation 19e. W1 is shown as a 
function of p i n  figure 11. It has a minimum a t  the equilibrium 
distance p = 1.5, at  which W1 = -3.1 v.e. The comparison of 
theory and experiment for the hydrogen molecule is shown in 
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table 4. The general agreement is entirely satisfactory in view 
of the fact that only the first-order perturbation calculation has 
been made. 

It is worthy of mention that the perturbation terms are actually 
e2 

larger than appears from W1. Thus a t  p = 1.5 the term - 
TAB 

has the value 18.1 v.e., so that the electronic perturbation energy 
is -21.3 v.e., which is to be compared with the experimental 
value -22.5 v.e. It is seen that the electronic perturbation 
energy is thus in error by only 5 per cent. Furthermore, we saw 
in Section VIb that the first-order perturbation calculation for 
the hydrogen molecule-ion gave an energy of dissociation of Ha+ 
of 1.62 v.e., which is 1 v.e. smaller than Burrau's correct value. 
A similar error is to be expected for the hydrogen molecule; and, 
as a matter of fact, the calculated energy of dissociation is here 
1.2 v.e. too small. We are hence justified in the belief that the 

TABLE 4 

Properties of the hydrogen molecule 

I 1 IO I =E* 

Calculated.. . . . . . . . . . 
Observed.. . .. . . . . .. . . 

a 0  

4800 cm.-l 
4262 

accurate theoretical treatment of the hydrogen molecule would 
give results in complete agreement with experiment. 

By bringing the nuclei into coincidence a helium atom in the 
normal state is formed; and a value for its energy can be obtained 
from the expression for the hydrogen molecule by neglecting the 
internuclear energy and by putting p = 0. It is found that W H ~  

19 = - -ez/u, = -64.3 v.e., which lies considerably above the 
8 

experimental value -78.8 v.e.; the error is in the same direction 
as that for DEI+. A similar limiting calculation for the hydrogen 
molecule-ion gives 'CYHe+ = -3e2/2u, = -40.6 v.e., instead of 
the correct value -4WH = -54.16 v.e. Thus for both He and 
He+ this perturbation treatment is inaccurate. The treatment 
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gives, however, 64.3 - 40.6 = 23.7 v. for the first ionisation 
potential of helium, which is in good agreement with the experi- 
mental 24.6 v. This agreement was adduced by Suguira as 
evidence of the accuracy of the perturbation treatment; but it 
is merely accidental. 

If $ (1) cp (2) or cp (1) $ (2) alone were to be considered, the 
perturbation energy would be the electrostatic energy of two 
nuclei and two electrons distributed according to the probability 
functions $2 and cp2; namely, 

This, the naive potential function, is also shown in figure 11. It 
corresponds to a relatively small attraction, so that the con- 
clusion can be drawn that in the hydrogen molecule the inter- 
change energy of the two electrons is the principal cause of the 
forces leading to molecule formation. 

b. The application to the hydrogen molecule of Burrau’s numerical 
solution for the molecule-ion 

If the interaction of the two electrons in the hydrogen molecule 
were small it could be neglected with respect to the electronic- 
nuclear interaction. Each electron would then be represented 
by an Hz+ eigenfunction, and the electronic energy would be 
just twice that calculated by Burrau. The interelectronic energy 
could then be calculated as a perturbation; this would necessitate, 
however, a knowledge of Burrau’s eigenfunctions in a form suit- 
able for integration. 

Lacking this knowledge, Condon (41) made use of the following 
semi-empirical method, The electronic energy of the helium 
atom is raised from -4 e2/a, = -108.32 v.e. (Burrau’s value) 
to -78.8 v.e. (the experimental value) by the electronic inter- 
action. If it be assumed that the interelectronic energy is to be 
raised to the same fractional value of the Burrau energy through- 
out the region corresponding to the normal state of the hydrogen 
molecule, there is obtained the electronic energy function shown 
in figure 12. Adding to this the electronic energy &/TAB, it is 
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found that equi€ibrium occurs at  ro = 0.73 A, with DH, = 4.3 or 
4.4 v.e. and wo = 7600 em.-’. These values, except for w,, are 
in excellent agreement with the experimental ones. 

This treatment is, however, of less significance than that of the 
preceding section, for it is more arbitrary and less confidence can 
be placed in it. In the first place, the interelectronic forces are 
not small, and it is to be expected that they will cause the electrons 
to tend to remain on different atoms, as is assumed in the previous 

w 
WH 

0 

P+ 

FIQ. 12 
Curve 1 shows the electronic energy of the hydrogen molecule neglecting inter- 

electronic interaction (from Burrau’s Solution for the molecule-ion) ; curve 2, the 
electronic energy empirically corrected by Condon’s method; and curve 3, the 
total energy of the hydrogen molecule, calculated by Condon’s method. 

treatment of Heitler and London, The assumption that the 
total electronic energy as calculated by Burrau should be reduced 
in a constant ratio is, moreover, without justification. It is 
definitely incorrect for p large; for the doubled Burrau energy 
then approaches the correct value ZW,. An assumption which 
might just as well be made and which is satisfactory both for 
p = 0 and for p = GO is that the difference between the doubled 
Burrau energy and 2WH is to be reduced in a constant ratio; 
but it leads to the incorrect values DH, = 8.0 v.e. and r, = 0.90 A. 
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e. The excited states of the hydrogen molecule 

Excited states of the hydrogen molecule may be formed from a 
normal hydrogen atom and a hydrogen atom in various excited 
states.2 For these the interelectronic interaction will be small, 
and the Burrau eigenfunction will represent the molecule in part 
with considerable accuracy. The properties of the molecule, in 
particular the equilibrium distance, should then approximate 
those of the molecule-ion; for the molecule will be essentially a 
molecule-ion with an added electron in an outer orbit. This is 
observed in general; the equilibrium distances for all known 
excited states but one (the second state in table 1) deviate by less 
than 10 per cent from that for the molecule-ion. It is hence 
probable that states 3,4 ,5 ,  and 6 are formed from a normal and an 
excited atom with n = 2, and that higher states are similarly 
formed. 

The exceptional state B has a very large equilibrium distance 
and small oscillational frequency, as has been pointed out by 
Birge ( 7 ) .  This suggests that the molecule is here not non-polar, 
but is a polar compound of Hf and H-. The electron affinity of 
hydrogen is probably negative, (about - 1 kcal/mole (42)), and 
it is doubtful that a free negative hydrogen ion in the normal 
state can exist. The presence of another proton would, however, 
stabilize the structure, so that a polar hydrogen molecule could 
be formed. The unperturbed system is again degenerate, for 
both electrons may be attached to nucleus A or to nucleus B. 
The zeroth-order eigenfunction representing the most stable 
polar state of the molecule is 

The first-order perturbation theory in this case does not give good 
results, since the mutual interaction of two electrons on one 
nucleus is so large as to greatly deform the eigenfunctions; it leads 

*The calculation of the potential function for these states with the use of the 
method of Heitler and London is being made by Prof. E. C. Kemble (private 
communication to Dr. J. R. Oppenheimer). 
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to an equilibrium distance of about 1B and an energy about 5 v.e. 
greater than the normal state. There is no energy level of the 
molecule in this region. The attempt to take into account the 
effect of deformation has led to the conclusion that both r,, and 
the energy should be increased to values compatible with those 
observed for the first excited state B. Since a polar state is to be 
expected in this region and since B has properties explicable on 

FIG. 13. QUALITATIVE REPRESENTATION BY CONTOURS OF ELECTRON DISTRIRIJ- 
TION FOR Two HYDROGEN ATOMS UNITING TO FORM 

A MOLECULE (LONDON) 

this basis but not otherwise, the identification of the two may be 
made with some certainty. 

We shall next consider whether or not the antisymmetric 
eigenfunction @Hn for two hydrogen atoms (Equation 29b) 
would lead to an excited state of the hydrogen molecule. The 
perturbation energy is found to be 
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This potential differs from that of Equation 30 in that the inter- 
change energy has the opposite sign (and slightly different magni- 
tude). As a result it corresponds to repulsion between the two 
atoms at  all distances, and not to  a stable state of the molecule 
(see figure 11). This result, which had been suggested as a 
possibility by Hund (31), was proved by Heitler and London. 
The existence of two potential functions representing the 
interaction of two normal hydrogen atoms is very remarkable 
and has, I believe, no classical interpretation. A certain feeling 

/ 

FIQ. 14. THE ELECTRON DISTRIBUTION FOR Two HYDROGEN ATOMS IN ELASTIC 
COLLISION (LONDON) 

for the phenomenon results from the study of the distribution of 
the two electrons in the two cases (London, 46). In figure 13, 
representing the two hydrogen atoms in the process of forming a 
molecule, it is seen that the electrons tend to assume positions 
between the two nuclei, and form a bond between them-the 
shared electron-pair. But if the potential function represents 
elastic collision (the antisymmetric eigenfunction) the electrons 
take up positions on.the outer sides of the atoms (fig. 14), with the 
result that the strong internuclear repulsion becomes effective. 

VIII. THE PAULI EXCLUSION PRINCIPLE. THE INTERACTION OF 
TWO HELIUM ATOMS 

It was mentioned in Section I11 that the fine-structure of 
spectra arises from a phenomenon equivalent to a first approxi- 
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mation to that resulting from a spin of the electron. The spin 
moment of the electron can assume two orientations in space, 
which may be represented by spin eigenfunctions CY and p. In the 
foregoing sections discussion has been given only to  eigenfunctions 
referring to the electronic positions. A complete eigenfunction is 
the product of a positional eigenfunction and a spin eigenfunction, 
as + a o r  + &  

The observed structure of the spectra of many-electron atoms 
is entirely accounted for by the following postulate: Only  
eigenfunctions which are antisymmetric in the electrons; that i s ,  
change sign when any  two electrons are interchanged, correspond to 
existant states of the system. This is the quantum mechanics 
statement (26) of the Pauli exclusion principle (43). 

It is equivalent to saying that two electrons cannot occupy the 
same orbit. Thus there is no antisymmetric eigenfunction 
composed of + (1) CY (1) and # (2) CY (2), and no such state exists 

1 
4 2  

(for the helium atom, say). The allowed state is -- { # (1) CY (1) 

+ (2) p (2) - + (1) 6 (1) + (2) CY (2) ] ; that is, in the normal state 
of the helium atom the two electrons have oppositely directed 
spins. Other consequences of the exclusion principle, such as 
that not more than two electrons can occupy the K-shell of an 
atom, follow directly. 

In  dealing with systems containing only two electrons we have 
not been troubled with the exclusion principle, but have accepted 
both symmetric and antisymmetric positional eigenfunctions; for 
by multiplying by a spin eigenfunction of the proper symmetry 
character an antisymmetric total eigenfunction can always be 
obtained. In  the case of two hydrogen atoms there are three 

1 symmetric spin eigenfunctions CY (1) CY (2), p (1) p (2), and -= 
4 2  

{ Q! (1) 0 (2) + p (1) CY (2)}, and one antisymmetric, - { CY (1) 

p (2) - p (1) CY (2) 1. The last is required to make the symmetric 
positional eigenfunction \kH, of Equation 29a conform to Pauli’s 
principle, and the first three for the antisymmetric aRZ. Since 
the a priori probability of each eigenfunction is the same, there 

1 
4 3  
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are three chances that two hydrogen atoms will repel each other 
to one that they will attract. 

But if the system contains more than two electrons explicit 
consideration must be given the spins. This is particularly 
evident in the problem of the interaction of two helium atoms. 
There are four individual eigenfunctions #a, #p, (oa, and (ob, which 
are to be occupied by the four electrons. The only eigenfunction 
allowed by Pauli's principle for the system is 

(a is a factor of such value as to make the eigenfunction nor- 
malized.) 

It will be seqn that this is antisymmetric, for interchanging 
any two electrons is equivalent to interchanging two rows of the 
determinant, and hence to changing its sign. 

Substitution of this eigenfunction in an expression of the type 
of Equation 21 permits the evaluation of the perturbation energy 
W1, in the course of which use is made of the properties of ortho- 
gonality and normalization of the spin eigenfunctions ; namely, 

in which E is the variable occurring in the spin eigenfunctions. 
The value of one further integral is also needed: 

Is = ss lL2(') :ff' rp(2) dnl dn2 

(190 
E z 1- (2 + ; + .) - e- 3 (2- + 2)). 

a. 1 6 ~  1 6 ~  8 J 

The potential function obtained is only approximately correct, 
for the eigenfunctions are in fact largely perturbed by the inter- 
electronic interaction. There are no forces tending to' molecule 
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formation, but instead repulsion at  all distances. The van der 
Waals’ attractive force (which is very small for helium) does 
not appear, and the repulsive force is much larger than the actual 
one; these discrepancies are no doubt due to the inaccuracy of 
the calculation. 

It is of interest to  carry out the evaluation of the naPve poten- 
tial function obtained from the eigenfunction # (1) CY (1) # (2) 
B (2) cp (3) CY (3) cp (4) p (4) ; Le., with the neglect of the interchange 
energy of the electrons. This potential leads to a strong attrac- 
tive force, with the formation of molecules He2 with about 10,000 
or 15,000 cal/mole dissociation energy. The resonance phenom- 
enon is accordingly largely responsible for the very small van 
der Waals’ forces in helium; without it the boiling point of 
helium would be around room temperature. 

IX. OTHER RELATED PROBLEMS. THE EXTENSION O F  THE THEORY 

The interaction of two alkali metal atoms is to be expected to 
be similar to that of two hydrogen atoms, for the completed shells 
of the ions will produce forces similar to the van der Waals’ 
forces of a rare gas. The two valence electrons, combined 
symmetrically, will then be shared between the two ions, the 
resonance phenomenon producing a molecule-forming attractive 
force. This is, in fact, observed in band spectra. The normal 
state of the Naz molecule, for example, has an energy of dissocia- 
tion of 1 v.e. (44). The first two excited states are similar, as is 
to be expected; they have dissociation energies of 1.25 and 0.6 
v.e. respectively. 

In  an atom of the second column of the periodic system, such 
as mercury, the two valence electrons are in the normal state 
s-electrons, and form a completed sub-group. Two such atoms 
would hence interact in a way similar to two helium atoms; 
the attractive forces would be at  most very small, This is the 
case for Hgz, which in the normal state has an energy of dissocisG 
tion of only 0.05 v.e. But if one or both of the atoms is excited 
strong attractive forces can arise; and indeed the excited states 
of Hg2 are found to have energies of dissociation of about 1 v.e. 
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Similarly two Hg+ ions will attract each other with some force to 
form the stable Hg,++ ion long recognized by chemists. 

The application of the quantum mechanics to the interaction 
of more complicated atoms, and to the non-polar chemical bond 
in general, is now being made (45). A discussion of this work 
can not be given here; it is, however, worthy of mention that 
qualitative conclusions have been drawn which are completely 
equivalent to G. N. Lewis’s theory of the shared electron pair. 
The further results which have so far been obtained are promising; 
and we may look forward with some confidence to the future 
explanation of chemical valence in general in terms of the Pauli 
exclusion principle and the Heisenberg-Dirac resonance phenom- 
enon. 

NOTE ADDED IN PROOF 

Since the submission of this article for publication a number of 
pertinent papers have appeared. 

H. A. Wilson (Proc. Roy. SOC. London, A 118, 635 (1928); 
see also (29)) states that no functions satisfying thewave equation 
for the hydrogen molecule-ion and bounded everywhere exist. 
There are, however, solutions which become logarithmically 
infinite along the nuclear axis and are bounded elsewhere. These 
solutions would not be considered eigenfunctions if the usual 
definition is retained; but would be in case the restriction that the 
eigenfunction be bounded everywhere were replaced by the 
restriction that it be quadratically integrable. Wilson has made 
this assumption, and has found that the so-calculated properties 
of the hydrogen molecule-ion in the normal state are approxi- 
mately those given by Burrau. An accurate treatment and the 
consideration of excited states have not been published. 

A treatment of the hydrogen molecule by the Ritz method, 
applied to helium by Kellner (25), has been reported by S. C. 
Wang (Phys. Rev., 31, 579 (1928)). With this method the 
individual eigenfunctions # and cp (equation 29) are taken to be 
the hydrogen-like eigenfunctions of an atom with atomic number 
2 differing from unity. The value found for 2 is 1.166, and the 
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corresponding constants of the hydrogen molecule in the normal 
state are 

r, = 0.75 A, I, = 0.459 x 10-40 g. cm.2, D H ~  = 3.76 v.e., w0 = 4900 cm-’. 

Comparison with table 4 shows that these values are in somewhat 
better agreement with the observed ones than are Sugiura’s. 

B. N. Finkelstein and G. E. Horowitx (2. f. Physilc, 48, 118 
(1928)) have similarly applied the Ritz method to the hydrogen 
molecule-ion, obtaining the following values : 

z = 1.228, p S 2 ,  To 2 1.06 A, WH2’ = - 15.75 v.e. 

These results are better than those given by the perturbation 
theory (table 3). 

F. R. Bichowsky and L. C. Copeland ( J .  Am. Chem. SOC., 50, 
1315 (1928)) have made a direct determination of the heat of 
formation of molecular hydrogen, leading to the value DH2= 
105000 h3500 cal/mole. 
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